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ABSTRACT5

The El Niño/Southern Oscillation (ENSO) exhibits well-known asymmetries: (1) warm6

events are stronger than cold events; (2) strong warm events are more likely to be followed7

by cold events than vice versa; and (3) cold events are more persistent than warm events.8

Coupled GCM simulations, however, continue to underestimate many of these observed9

features.10

To shed light on these asymmetries, we begin with a widely-used delayed-oscillator con-11

ceptual model for ENSO, and modify it so that wind stress anomalies depend more strongly12

on SSTAs during warm conditions - as is observed. We then explore the impact of this13

nonlinearity on three dynamical regimes for ENSO: self-sustained oscillations, stochastically14

driven oscillations, and self-sustained oscillations interrupted by stochastic forcings. In all15

three regimes, the nonlinear air-sea coupling preferentially strengthens the feedbacks (both16

positive and delayed negative) during the ENSO warm phase – producing El Niños that grow17

to larger amplitude and overshoot more rapidly and consistently into the opposite phase,18

than do the La Niñas. Finally, we apply the modified oscillator to observational records, and19

to control simulations from two global coupled ocean-atmosphere-land-ice models (GFDL-20

CM2.1 and GFDL-CM2.5), to elucidate the causes of their differing asymmetries.21
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1. Introduction22

Fluctuations of the El Niño/Southern Oscillation (ENSO) involve coupled changes to23

the ocean and atmosphere. During the warm phase of ENSO, the prevailing easterly winds24

over the central Pacific weaken; these westerly wind anomalies advect warm surface water25

toward the east, reduce the zonal slope of the thermocline and inhibit the upwelling of cold26

water in the eastern Pacific, which feeds back positively on the warming of surface water in27

the eastern Pacific and allows small perturbations to grow. This positive feedback is also28

known as the Bjerknes feedback (Bjerknes 1969). To first approximation, La Niña (the cold29

phase) anomalies are roughly the opposite of those of El Niño (Larkin and Harrison 2002,30

hereafter LH2002). Theories proposed to explain the termination of El Niño (La Niña) and31

its transition into the opposite phase include the reflection of oceanic internal waves at the32

eastern and western boundaries (Suarez and Schopf 1988; Battisti and Hirst 1989, hereafter33

BH1989), recharge and discharge of equatorial warm water due to Sverdrup balance (Jin34

1997), western Pacific wind-forced Kelvin waves (Weisberg and Wang 1997), and anomalous35

zonal temperature advection by oceanic currents (Picaut et al. 1997). These theories agree36

that oceanic adjustments result in delayed negative feedbacks that explain the turnabout37

between El Niño and La Niña, with simple models illustrating how these mechanisms can38

result in oscillatory behavior for ENSO. Although nonlinearity has been shown to impact39

the growth and decay of El Niño (Tziperman et al. 1997; Gebbie et al. 2007; Vecchi 2006;40

Vecchi and Harrison 2006), linear techniques that are widely used for studying ENSO, such41

as empirical orthogonal function (EOF) analysis and linear regression, tend to treat El Niño42

and La Niña as simple mirror images of each other.43

For all the approximate symmetries of El Niño and La Niña events, considerable asymme-44

try does exist. Most noted in past literature is the amplitude asymmetry of ENSO, namely45

that El Niño tend to be stronger than La Niña (Burgers and Stephenson 1999). Several46

oceanic mechanisms have been proposed for this asymmetry: nonlinear dynamical heating47

(Jin et al. 2003; An and Jin 2004) and negative feedback due to tropical instability waves48
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which are stronger during La Niña (Wang and McPhaden 2000; Vialard et al. 2001). A49

common element of all these proposed mechanisms is their inherent oceanic origin.50

Other studies have drawn attention to the asymmetric atmospheric response to sea surface51

temperature changes. Kang and Kug (2002) studied a hybrid atmosphere-ocean coupled52

model, and suggested that the relatively weaker sea surface temperature anomalies (SSTA)53

and shorter duration for La Niña are attributable to the westward shift of the wind stress54

anomalies (Hoerling et al. 1997). Philip and van Oldenborgh (2009), Frauen and Dommenget55

(2010) found that a nonlinear zonal wind response to opposite sign SST anomalies may have56

an important influence on the SST skewness in the eastern tropical Pacific. Dommenget et al.57

(2013) suggest that the skewness in SST is related to the asymmetries in the pattern shape58

and the time evolution of ENSO events which can be partially attributed to the nonlinear59

response of the zonal wind to SST anomalies. Nonlinear relationships between the seasonal60

cycle and ENSO as well as the origins of the ENSO’s phase locking to the seasonal cycle61

were also studied (Harrison and Vecchi 1999; Galanti and Tziperman 2000; Tziperman et al.62

1997; Galanti et al. 2002).63

In addition to amplitude asymmetry, there are other differences in the evolution of El64

Niño and La Niña. LH2002 characterized differences in the life cycles of the warm and65

cold phases by examining the ENSO behavior phase-by-phase. In their appendix, LH200266

note that warm-to-cold transitions tend to occur within a single year, with the cold event67

emerging the year following the warm event. In contrast, cold-to-warm transitions occur68

over 1-3 years. Okumura and Deser (2010) also showed that there is a robust asymmetry69

in the duration of El Niño and La Niña in observations, with La Niña persisting longer, a70

feature also noted by Kessler (2002). Subsequently, Okumura et al. (2011) proposed that an71

asymmetric wind response due to delayed SST forcing in the Indian Ocean acts to prolong72

La Niña.73

Various observational datasets of Pacific surface wind stress support the hypothesis that74

during ENSO, the wind stress response to the SST anomalies is weaker in the cold phase75
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than in the warm phase. Figure 1 shows regression coefficients of zonal wind stress anomalies76

onto the Niño-3.4 SSTA index (area average of SST anomalies at 5◦S– 5◦N, 170◦W – 120◦W)77

during warm and cold conditions, for the FSU observational wind product (see Section 2).78

The asymmetry in the sensitivity is also evident in other estimates of wind stress. Figure79

2 shows scatter plots of the zonal wind stress anomalies averaged over a 40◦ longitude by80

10◦ latitude region where the regression coefficients are largest versus the observed Niño-3.481

SSTA index, from 2 months before an event peak to 2 months after the peak. The averaging82

area is also shifted zonally according to where the regression coefficients are the largest for a83

particular ENSO phase. It is clear that wind stress responds more sensitively to sea surface84

temperature anomalies during warm conditions.85

In this study, we have explored the impact of this atmospheric nonlinearity on the sym-86

metry of ENSO. We will parametrize this effect in a simple model, by having the air-sea87

coupling efficiency be dependent on the ENSO polarity; and we explore how this dependence88

can cause asymmetries in the duration, amplitude and sequencing of ENSO. In Section 2,89

we describe the observational datasets and GCM outputs to which we apply the measures90

described in Section 3 to identify these three aspects of asymmetry. The formulation of the91

conceptual ENSO model used is given in Section 3. The results are presented and analyzed92

in Section 4. Section 5 gives a summary and further discussions.93

[Figure 1 about here.]94

[Figure 2 about here.]95

2. Data sources96

a. SST data97

There are uncertainties in past reconstructions of the tropical Pacific SST (Vecchi et al.98

2008 ) and we therefore explore two SST datasets: HadISST and ERSST version 3b.99
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1) HadISST100

The Hadley Centre sea ice and sea surface temperature dataset for 1880 – 2012 (HadISST;101

Rayner et al. 2003) is used for computing the Niño–3.4 SSTA index. We examine the his-102

torical record entirely as well as in segments. Monthly climatologies are computed over the103

period of time series sampled, and the anomalies are computed by subtracting the clima-104

tologies from the original record. The HadISST Niño–3.4 SST anomalies have increased by105

0.2 degrees from 1880 to 2012.106

2) ERSST v3b107

The Extended Reconstructed Sea Surface Temperature (ERSST) Version 3b (Smith et al.108

2008) provided by NOAA is used as another long-term SST observational record to compare109

with HadISST. The dataset spans from 1854 to present. In the current study, the time series110

from 1880 to 2012 is used since the strength of the signal becomes more consistent after111

1880. This version of SST analysis uses in situ SST data and improved statistical methods.112

Unlike the version 3, satellite data that causes a small cold bias is not used in version 3b.113

From 1880 to 2012, ERSST Niño–3.4 SST anomalies have increased by 0.6 degree.114

The warming trends in the HadISST and ERSST products are included in the analysis115

presented below. The Niño–3.4 temperature anomalies are also smoothed using a running116

5-month boxcar average before analysis. We will discuss the sensitivity of the results to117

whether the time series is detrended or not.118

b. Surface wind stress estimates119

There are also large uncertainties in reconstructions of wind stress over the Pacific (Wit-120

tenberg 2004), so we use multiple wind stress estimates in our analysis. Observational121

datasets used here for the wind stress response analysis are: the COAPS third-generation122

Florida State University objectively Gridded Pacific monthly mean in-situ flux products123
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(FSU3; Bourassa et al. 2005) from 1987 to 2004; the 40-year European Centre for Medium-124

Range Weather Forecast (ECMWF) Reanalysis (ERA-40; Uppala et al. 2005) 6-hourly mo-125

mentum stress product from 9/1957 to 8/2002; ECMWF Interim Reanalysis (ERA-Interim;126

Dee and Uppala 2009) from 1979 to 2011; NASAs Modern-Era Retrospective Analysis for127

Research and Applications (MERRA; Rienecker et al. 2011) from 1979 to 2010 and the128

National Centers for Environmental Prediction-National Center for Atmospheric Research129

(NCEP–NCAR) Reanalysis (NCEP1; Kalnay et al. 1996; Kistler et al. 2001) from 1948 to130

2011.131

c. Coupled GCMs132

1) GFDL CM2.1133

CM2.1 is a Geophysical Fluid Dynamics Laboratory (GFDL) global coupled atmosphere-134

ocean-land-ice GCM. The detailed formulations are described by Delworth et al. (2006) (and135

references therein). Wittenberg et al. (2006) describes the behavior of ENSO in this model.136

The CM2.1 has taken part in the Third and Fifth Coupled Model Intercomparison Project137

(CMIP3 and CMIP5) and the Fourth Assessment of the Intergovernmental Panel on Climate138

Change (IPCC). In this study, we use the monthly mean output of the pre-industrial control139

experiment integrated for 4000 years with fixed 1860 estimates of solar irradiance, land cover,140

and atmospheric composition. The long run provides more than 300 El Niño and 300 La141

Niña events, and thus allows statistically significant analysis of the behavior of simulated142

ENSO. The description of the interdecadal variability of ENSO for the first 2200-years of143

this experiment is described in Wittenberg (2009).144

2) GFDL CM2.5145

CM2.5 is a newer, higher resolution (atmosphere/land horizontal resolution is 0.5 degree146

instead of 2 degree; ocean/sea ice resolution is about 0.25 degree instead of 1 degree), global147
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coupled GCM based on CM2.1. The two models are initialized and forced in a similar148

fashion. The resolutions of the atmosphere and ocean components in CM2.5 are increased.149

A smaller viscosity is used in CM2.5. Parametrized eddy mixing is excluded in the CM2.5150

ocean, while it is included in CM2.1. Further details on CM2.5 and comparisons with CM2.1151

are documented in Delworth et al. (2012). The data used in this study is based on a 260-year152

control experiment using fixed 1990 estimates of solar irradiance, land cover and atmospheric153

composition. 37 El Niños and 34 La Niñas are identified in this experiment.154

3) Comparison of the simulated ENSO in CM2.5 and CM2.1 with observa-155

tions156

Delworth et al. (2012) describe how the simulated ENSO in CM2.5 compares to CM2.1157

and observations. More detailed descriptions of the CM2.1 ENSO behavior can be found in158

Wittenberg et al. (2006). Here we summarize some of their results.159

ENSO amplitude in CM2.5 is weaker and is closer to observations, while CM2.1 tends to160

simulate ENSO events that are too strong. While both models have equatorial Pacific SST161

anomalies that extend too far to the west, this bias is reduced in CM2.5.162

Both models have problems simulating the seasonal phase locking of ENSO. The CM2.1163

ENSO shows almost no seasonal phase locking, except that the Niño-3.4 index has a slight164

tendency to peak between October and February and strong events tend to lock better to165

the seasonal cycle. CM2.5 Niño-3.4 index has better phase locking compared to CM2.1, but166

is still weaker and later than observations by about a month.167

At interannual time scales, the spectrum of tropical Pacific SSTs in CM2.5 is too con-168

centrated at about 2.5 years. CM2.1 shows a broader and more realistic spectrum, but is169

stronger than the observations at interannual time scales. Accordingly, the ENSO in CM2.5170

is noticeably more regular than CM2.1 and the observed. However, the lengths of obser-171

vational records are short, so the spectra in this frequency band are uncertain (Wittenberg172
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2009; Vecchi and Wittenberg 2010).173

3. Methods174

a. The conceptual ENSO model175

Following the delayed-oscillator model proposed by BH1989, which is closely related to

the models studied by Suarez and Schopf (1988) and Zebiak and Cane (1987), we model

ENSO as arriving from two essential drivers. First, the Bjerknes positive feedback that

leads to instability; second, a delayed negative feedback that results in oscillations. We

thereby use a conceptual model of ENSO based on the BH1989 model:

∂T

∂t
= −bT + c′τx (t− t1)− d′τx (t− t2)− εT 3 (1)

where T is the Niño–3.4 SST anomaly. τx is the wind stress anomaly at the central equatorial176

Pacific near the date line. t1 is the time required for wind stress response to positively177

feedback to surface temperature T . t2 is the time required for the negative feedback to178

enact. t1 is smaller than t2. b, c
′ and d′ are positive scalar parameters. ε is non-zero when179

the system is unstable otherwise. The current settings for t1 and t2 are 1 and 6 months,180

which are roughly the time required for the first/second baroclinic Kelvin wave to propagate181

eastward from the date line to the American coasts and the time required for Rossby waves182

to propagate westward, and reflect back as Kelvin waves to the eastern Pacific (Harrison and183

Giese 1988; Harrison and Vecchi 1999).The qualitative conclusion is unchanged if different184

values of t1 and t2 are used as long as t2 > t1. If t1 = 0, one recovers the BH1989 formulation.185

The first term on the right-hand side of Eq(1) is a qualitative representation of local186

dampings of T due to air-sea fluxes, the mean zonal advection of the anomalous zonal187

temperature gradient and the mean vertical advection of the anomalous temperature gradient188

that depends on T . Guided by BH1989 and regression analysis on these processes at the189

eastern Pacific, the value of b is kept fixed at 0.24/mon throughout the entire study.190
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The second and the third terms are the positive and the delayed-negative feedbacks. Each191

of these two terms incorporates the anomalous zonal advection of the mean zonal tempera-192

ture gradient, (part of the) mean vertical advection of the anomalous vertical temperature193

gradient and the anomalous vertical advection of the mean vertical temperature gradient.194

By construction, Eq(1) gives a symmetric oscillator in which warm and cold maxima have

equal persistence, frequencies and amplitudes. To break the symmetry, we write τx = τx(T )

such that the wind stress anomalies respond more sensitively to warm SST anomalies than

to cold SST anomalies. For simplicity, we write τx as a piecewise linear function of T , i.e.:

τx = γ (T + r |T |) (2)

where γ (unit: Pa/K) and r (nondimensional) are both scalar parameters. For r positive195

and less than 1, wind stress anomalies are stronger for the same degree of positive T than196

negative T .197

From the regression analysis of wind stress response to SST anomalies (Fig 1), we can

estimate r from the difference in the regression slopes:

r =
sw − sc
sw + sc

(3)

where sw, sc are the slopes for warm and cold events respectively.198

Table 1 summarizes the value of r estimated from different datasets. Most datasets199

produce an r of about 20% with the exception of NCEP–1. This agrees with the suggestion200

made by (Wittenberg 2004) that FSU is recommended over NCEP–1 for extended studies of201

ENSO since the former dataset agrees better with other observations and updated analysis.202

Why the NCEP–1 does not show the nonlinear relationship between the zonal wind stress203

and SST during ENSO, as is seen in other datasets, is unclear.204

[Table 1 about here.]205

In addition to the asymmetry in the intensity of the wind response, it is likely that the206

zonal shift in the wind stress patterns (Fig 1) between El Niño and La Niña may also be207
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an important feature of ENSO (Kang and Kug 2002). However, we forgo investigation of208

pattern-change effects in the present study, in order to focus more intensely on the effects of209

the wind stress strength anomaly.210

Further regression analysis of the wind stress response shows that CM2.1 has a large211

estimated value of r about 46%, much higher than the observed. Conversely, CM2.5 has a212

smaller value of r(= 15%).213

As in BH1989, there are two key regions in the parameter space, one being a stable214

region in which the oscillator is damped, another being an unstable region in which small215

perturbations in the oscillator grow to infinity. The unstable regime can be further divided216

into the an oscillatory and a non-oscillatory regime. To sustain an oscillation for the stable217

region, a stochastic wind forcing is superimposed on τx. The stochastic forcing has an218

amplitude that is normally distributed with mean zero and a standard deviation σ (unit:219

Pa), and has a decorrelation time of 0.2 months. For the unstable region, no stochastic220

forcing is added, but ε in Eq(1) would be non-zero to stabilize the oscillation (BH1989). The221

stability characteristics across the parameter space are shown in Figure 3. A few examples222

of the parameter regimes 1 and 2 are shown in Figure 4. Region 1 is the linearly stable,223

damped region with ε = 0. Region 2 is the linearly unstable region but is nonlinearly stable224

using ε > 0. Region 3 is unstable when ε = 0; with ε > 0, the oscillation dies quickly and225

converges to a constant non-zero value, which is far from the observed behavior. Regime 3226

is not considered in the rest of this study.227

[Figure 3 about here.]228

[Figure 4 about here.]229

With stochastic forcing, Eq. (2) becomes

τx = γ (T + r |T |) +N(t) (4)

where N is Gaussian white noise with zero mean and standard deviation σ. Eq(1) can be
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written more compactly as

∂T

∂t
= −bT+c [T (t− t1) + r |T (t− t1)|]−d [T (t− t2) + r |T (t− t2)|]+c′N(t−t1)−d′N(t−t2)−εT 3

(5)

where c = γc′ and d = γd′ now have units of 1/month. σ is non-zero only in region 1230

unless otherwise specified. ε (ε > 0) is non-zero only in region 2 and 3. The values of σ and231

ε are tuned so that the simulated T has a standard deviation of roughly 0.8K, in order to be232

compared with the observations. The values of σ and ε do not alter qualitative conclusions233

of this paper regarding the asymmetry of the simulated ENSO.234

Since the stochastic forcing is independent of T and the additional damping is an odd235

function of T , neither of these two functions should introduce asymmetries. Any asymmetry236

in this model will be attributable entirely to τx as a piecewise function of T . This permits237

a focused look at the impacts of this particular nonlinearity, as a foundation for future238

inclusion of other nonlinearities. In this paper we present figures using r = 0% and r = 60%239

for apparent and clear comparisons; we have also explored other intermediate values of r240

and showed some results using r = 20% and r = 40%.241

b. Definitions of ENSO phases and asymmetry242

To compare the conceptual model results with the observations and GCMs, consistent243

definitions of ENSO events, peaks and durations are needed. Despite the richness of the244

ENSO phenomenon (e.g. LH2002; Wolter and Timlin 2011), we use the sea surface temper-245

ature anomaly in the central/eastern Pacific Ocean Niño–3.4 box as a proxy to illustrate the246

asymmetries of ENSO in observations and GCMs. To consistently compare the conceptual247

model results with the observations and GCMs, the same recipe is applied to the time series248

T simulated by the conceptual model.249

El Niño (La Niña) is defined such that the 5-month running mean of the Niño–3.4 index250

exceeds (is below) its 90-th (10-th) percentile of the time series, for at least 3 consecutive251
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months. Other percentiles (e.g. 85-th/15-th) have been explored, and the fundamental252

results remain roughly the same. The years of warm and cold events in the observational253

datasets are summarized in Figure 5. Figure 6 illustrates the criteria for defining events,254

terminations and durations, as will be described below.255

[Figure 5 about here.]256

The termination time of events is calculated by the time lapse from the event peak to257

the time when the Niño–3.4 index first comes within 25% of the standard deviation from the258

time mean. If an event persists and reintensifies into another event of the same sign such259

that both events terminate at the same time, the preceding event is not considered in the260

duration analysis to avoid double counting.261

The asymmetry in sequencing is examined by calculating the sample conditional proba-262

bilities of different types of transitions. This analysis is more uncertain for the observations263

largely due to the ambiguity of how one identifies a transition type and the inadequate num-264

ber of events. To be consistent across observational datasets and GCM outputs, we adopt265

the following procedures when calculating the event transition probability:266

i. Identify the El Niño and La Niña events using the 90-th and 10-th percentiles and267

persistence criteria268

ii. For each warm or cold event, for example, a warm event:269

- identify when the event terminates270

- if the next event is a cold (warm) event and occurs within 12 months after the271

termination, this is identified as a warm-to-cold (warm-to-warm) transition272

Following these procedures, transition probabilities are calculated such that

Pwarm-to-warm + Pwarm-to-cold + Pwarm-to-else = 1

Pcold-to-cold + Pcold-to-warm + Pcold-to-else = 1

[Figure 6 about here.]273
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4. Results274

a. Observations and GCM275

In the observational record and the models, more warm events terminate within a year276

after peaks than cold events do. Figure 7 shows the cumulative distribution of termination277

times for warm and cold events for the observational datasets and global climate models’278

control run outputs. This result is consistent with LH2002 and Okumura and Deser (2010).279

If the Niño–3.4 SSTA time series is detrended, cold events appear to last much longer, i.e.280

the asymmetry in duration is amplified upon detrending.281

Following the procedures described in Section 3, conditional probabilities for different282

transition types are calculated and shown in Figure 8. From the observations, there is a283

higher likelihood to have warm events be followed by cold events than vice versa. Cold-284

to-cold transitions are also more frequent than warm-to-warm transitions. This qualitative285

conclusion holds even when a linear trend is removed from the Niño–3.4 SST index. The286

numbers of observed warm and cold events are so small that the statistical significance287

varies with the choice of Niño–3.4 SSTA thresholds as well as whether or not a linear trend288

is removed. In contrast, the control runs of CM2.1 and CM2.5 offer larger samples of El Niño289

and La Niña. The asymmetry in sequencing is consistently very strong in the CM2.1 control290

run, with warm-to-cold transitions much more likely than cold-to-warm transitions. CM2.5291

shows an asymmetry in favor of warm-to-cold transitions that is weaker than in CM2.1 but292

is similar to the observations. Cold-to-cold transitions are very rare in both models.293

Skewness is a useful measure to represent the amplitude asymmetry, as is summarized294

in Table 2. The Niño–3.4 SSTA index in the observations and CM2.1 have very consistent295

positive skewness, indicating stronger warm anomalies. CM2.5, however, with a more regular296

ENSO, shows a small negative skewness with Niño–3.4 index and a small positive skewness297

with Niño-3 index.298

[Table 2 about here.]299
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[Figure 7 about here.]300

[Figure 8 about here.]301

b. The conceptual ENSO model with r > 0302

We have analyzed results using different values of r. Table 2 summarizes the asymmetries303

that the coneptual model is capable of at r = 20% and r = 40%. Since more points in the304

c-d parameter space (i.e. fixing b) would show significant asymmetries with larger values of305

r. Figures in this section present results using r = 60% for illustrative purposes. All the306

qualitative results hold true for other positive values of r.307

1) Asymmetry in amplitude308

Figure 9 shows the skewness across the c-d parameter space with r = 60%. (The mag-309

nitude of the skewness increases with increasing values of r.) The skewness can be positive310

or negative depending on the relative strength of the positive and negative feedback, i.e.311

the ratio of c and d. If c/d is large, extreme SST anomalies depend more on the instability312

brought by the positive feedback, i.e. had the damping term been smaller, the system would313

be non-oscillatory and grow to infinity due to the strong positive feedback. In this case, pos-314

itive feedback is enhanced with a larger coupling efficiency during warm events. Therefore,315

warm events are able to grow to larger amplitudes while cold events become relatively weak,316

resulting in a positive skewness.317

Instead, if d/c is large, extreme SST anomalies depend more on the strong overshooting318

of the preceding events of the opposite sign, i.e. the system would be oscillatory unstable if319

the damping term was not strong enough. Therefore cold events can grow to larger ampli-320

tudes due to the stronger delayed cooling of the preceding warm events, while warm event321

peaks cannot grow as much since the delayed warming due to the preceding cold events is322

diminished. In short, if the coupling efficiency is larger during warm events, skewness be-323

14



comes positive in the parameter region where positive feedback strength is large, or negative324

where negative feedback strength is large. Notice that the cutoff does not lie along c = d325

because b is non-zero.326

[Figure 9 about here.]327

2) Asymmetry in duration328

[Figure 10 about here.]329

[Figure 11 about here.]330

As r increases, cold events terminate at a later time than warm events do. This difference331

in termination times resembles the behavior found in the observations and GCMs. Figure332

10 shows how the distributions of event termination time change with the value of r. The333

effect of r > 0 on the termination time across the parameter space is shown in Figure 11.334

Since the delayed negative feedback is strengthened for warm events, warm events tend335

to terminate faster than cold events do. In addition, as a cold event decays more slowly, the336

temperature anomaly that precedes the eventual turnaround of the cold event is not as large337

as it would have been had the event decayed more rapidly. Therefore, the slower termination338

of cold events weakens the delayed warming and makes the termination even slower.339

In addition, part of the longer termination time for cold events can be explained by the340

fact that the time mean state of the system is warmer than the equilibrium state when the341

temperature anomaly is strongly positively skewed. Taking the warmer time mean state as342

the reference neutral state, as is done with the observational datasets, inevitably increases343

the termination time of cold events. Nevertheless, following the contour of zero skewness in344

Figure 9, it is clear in Figure 11 that cold events tend to last longer than warm events in345

the conceptual model even when there is little amplitude asymmetry.346

If stochastic forcing is also added to self-sustained oscillations in region 2 (Figure 12),347

the spread of the termination time distribution for cold events increases more than that348
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for warm events. When the stochastic forcing intensity is moderate, high percentiles (e.g.349

95-th) of the cold event termination time extend more to longer durations than those of the350

warm events do. As stochastic forcing continues to amplify, the entire distribution of the351

termination time moves to shorter time scales because the signal begins to be dominated by352

stochastic forcing which has higher frequencies than the ENSO. This result clearly illustrates353

the susceptibility of cold events to external forcing.354

[Figure 12 about here.]355

3) Asymmetry in sequencing356

The conceptual model also shows a higher tendency for warm-to-cold transitions than357

cold-to-warm transitions with r > 0. As shown in Figure 13, the probability of warm-to-cold358

transitions minus that of cold-to-warm transitions are positive everywhere in the stable and359

stochastically driven region (region 1). In the region 2, the oscillation is self-sustained and is360

very regular. The positive difference in the transition probabilities in region 2, as shown in361

Figure 13, is due to the fact that some of the warm events peak later than 12 months after362

the preceding cold event termination and do not fulfill the transition criterion (see Section363

3).364

If stochastic forcing is added to the region 2, the probabilities of warm-to-warm and365

cold-to-cold transitions increase, and the latter increases more than the former, albeit to a366

slight extent (Figure 14).367

With the delayed negative feedback being stronger following warm events, and weaker368

following cold events, warm events are more likely to be plunge into cold events than vice369

versa – since the cooling following warm events is strong enough to overshoot, and is more370

resilient to disruptive stochastic forcing. In contrast, the weakened delayed warming during371

the termination of a cold event lowers the probability of a cold-to-warm transition. This372

explains why a stable, stochastically driven parameter region is necessary for the asymmetry373
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in sequencing to be revealed in this conceptual model.374

[Figure 13 about here.]375

[Figure 14 about here.]376

5. Summary and discussion377

The asymmetries of ENSO were examined using observational records, coupled climate378

models and a simplified dynamical framework. Three asymmetries between El Niño and La379

Niña are identified in models and observations: duration, sequencing and amplitude. The380

duration asymmetry is the tendency of cold events to last longer than warm events do. The381

amplitude asymmetry involves warm events tending to be stronger. The sequencing asym-382

metry involves the tendency of warm events to be followed by cold events more readily than383

vice versa. The central equatorial Pacific wind stress anomalies also exhibit an asymmetric384

response to sea surface temperature anomalies in models and observations. Using the well-385

known delayed-oscillator conceptual model, we parameterize the impact of the zonal wind386

stress asymmetric response, and we demonstrate that this can lead to the above-mentioned387

asymmetries in a consistent way. The duration asymmetry is a pervasive across the param-388

eter space we have explored. The sequencing asymmetry can be obtained only if there is389

stochastic external forcing. The amplitude asymmetry has the same sign as that observed390

when the positive feedback is strong compared to the delayed negative feedback.391

The asymmetries due to the additional nonlinearity to the ENSO conceptual model can392

be understood as follows: warm events are able to grow into larger amplitudes with the393

strengthened positive feedback. When they decay, the strengthened delayed negative feed-394

back causes warm events to terminate faster and increases the chance of a following cold395

event. The initial growth of the cold events comes from the preceding warm event but the396

cooling subsides soon after onset. If the overshooting is not too strong, the weakened positive397

17



feedback of cold events causes the cold events to mature at weaker amplitudes. When cold398

events terminate, the delayed negative feedback is weaker. The slower neutralization and399

the warmer long-term mean state are responsible for the longer durations of the cold events.400

Cold events are also more prone to be disrupted by external forcing and are less likely to be401

followed by a warm event. As a result, when there is a warm event, the predictability of a402

following cold event is higher. What follows a cold event is more uncertain. This result is403

consistent with Dommenget et al. (2013) that El Niños are mostly triggered by wind, less404

predictable, while La Niña are more predictable.405

The conceptual model simplifies the system into a few feedback terms and provides a406

potential guide for investigations when a climate model simulates ENSO asymmetries that407

are too strong or too weak. Figure 15 shows the parameter space regions where the conceptual408

model resembles the asymmetry statistics of the observations, CM2.1 and CM2.5. Table 2409

summaries the best solutions and the corresponding asymmetries. We may conclude that410

the best solutions for the observations and CM2.1 are very close to each other. The fact that411

CM2.1 shows a stronger ENSO asymmetry may be explained by the larger r diagnosed for412

CM2.1. The negative skewness in CM2.5, on the contrary, can be explained by the stronger413

delayed negative feedback parameter relative to that of the positive feedback. We speculate414

that the meridional extent of the wind stress anomaly may be the cause. Capotondi et al.415

(2006) show that the CMIP3 coupled GCMs exhibited a pervasive bias in which their patterns416

of wind stress anomalies were too far west and too narrow meridionally. They argued that by417

amplifying the delayed negative feedback, this shortened the simulated ENSO period. The418

conceptual model suggests that in the presence of asymmetric coupling (r > 0), the models’419

narrow and westward-shifted wind stress response patterns could also help explain their420

tendency toward overly-symmetric ENSO evolution. CM2.5, for example, has a particularly421

narrow wind stress anomaly pattern, a strong diagnosed delayed negative feedback, and422

highly symmetric ENSO behavior.423

[Figure 15 about here.]424
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In the conceptual model, the difference in the wind stress response during warm and425

cold conditions also leads to a time mean state that is warmer than the equilibrium state.426

Since the equilibrium state of nature is unknown, computing anomalies from the climatology427

has been a conventional approach in analyzing ENSO strength and duration in observations428

and models. The time mean state, however, cannot be acquired a priori. Therefore, for429

applications in which the mean climate state is a necessary reference for analysis (e.g. in430

defining the onset or termination of an event), we suggest that the impact of changes in431

variability on the mean state be considered.432

We also note that the seasonal cycle is not formally included in the current conceptual433

model. However, the nonlinear wind stress response to SST anomaly is diagnosed from434

observations and coupled climate models control experiments in which the seasonal cycle is435

included. Therefore the current results have not excluded, entirely, the contributions of the436

seasonal cycle on the asymmetry of ENSO.437

The coupling efficiency dependence on the polarity of ENSO could have several causes.438

For example, observations indicate that Westerly Wind Burst (WWB) occurrence depends439

on the state of ENSO (Harrison and Vecchi 1997; Vecchi and Harrison 2000). The state440

dependence of WWBs, their skewness, and their more frequent/strong occurrence at the441

onset of warm events, would potentially be one of the processes that leads to a positive r,442

for example, through the low frequency component of the WWBs. GCM experiments also443

indicate that the frequency and intensity of WWB can be promoted during El Niño due444

to shifted location of the warmest water (Lengaigne et al. 2003). Eisenman et al. (2005)445

suggest that this state dependence may be equivalent to an increase in the air-sea coupling446

strength during El Niño events and Gebbie et al. (2007) show that adding a state-dependent447

WWB parameterization to a hybrid coupled GCM increases the instability, irregularity, and448

asymmetry of its ENSO simulation.449

The observational data for the wind stress responses suggests r = 20% for the concep-450

tual model. While the model at r = 20% is capable of producing realistic asymmetries451
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in amplitude and transition probability, the duration asymmetry is weaker than observed.452

This suggests that other sources of nonlinearities, such as nonlinear dynamical heating, the453

nonlinear relationship between the eastern Pacific thermocline depth and the SST, and the454

nonlinear rectification of tropical instability waves, are also important in the understanding455

of the asymmetries.456

The current study raises a number of questions: why is the wind stress response sensitivity457

stronger during warm events? Nonlinearities in atmospheric convections are a likely source.458

How important are atmospheric nonlinearities compared to oceanic nonlinearities? What are459

the roles of seasonality, ocean adjustment times and the spatio-temperal patterns of wind460

stress coupling in the conceptual framework described here? How will future climate changes461

affect ENSO asymmetries? We are interested in answering these questions in the future.462

Acknowledgments.463

We are indebted to Xiaosong Yang and Isaac Held for providing comments and sugges-464

tions. This report was prepared by KC under Award NA08OAR4320752 from the National465

Oceanic and Atmospheric Administration, U.S. Department of Commerce. The statements,466

findings, conclusions, and recommendations are those of the author(s) and do not necessar-467

ily reflect the views of the National Oceanic and Atmospheric Administration or the U.S.468

Department of Commerce.469

20



470

REFERENCES471

An, S.-I. and F.-F. Jin, 2004: Nonlinearity and Asymmetry of ENSO. Journal of Climate,472

17 (12), 2399–2412.473

Battisti, D. S. and A. C. Hirst, 1989: Interannual Variability in a Tropical Atmosphere–474

Ocean Model: Influence of the Basic State, Ocean Geometry and Nonlinearity. Journal of475

the Atmospheric Sciences, 46 (12), 1687–1712.476

Bjerknes, J., 1969: Atmospheric Teleconnections From the Equatorial Pacific. Monthly477

Weather Review, 97 (3), 163–172.478

Bourassa, M. A., R. Romero, S. R. Smith, and J. J. OBrien, 2005: A New FSU Winds479

Climatology. Journal of Climate, 18 (17), 3686–3698.480

Burgers, G. and D. B. Stephenson, 1999: The normality of El Niño. Geophysical Research481

Letters, 26 (8), PP. 1027–1030.482

Capotondi, A., A. Wittenberg, and S. Masina, 2006: Spatial and temporal structure of trop-483

ical pacific interannual variability in 20th century coupled simulations. Ocean Modelling,484

15 (34), 274–298.485

Dee, D. P. and S. Uppala, 2009: Variational bias correction of satellite radiance data in the486

ERA-Interim reanalysis. Quarterly Journal of the Royal Meteorological Society, 135 (644),487

18301841.488

Delworth, T. L., et al., 2006: GFDL’s CM2 Global Coupled Climate Models. Part I: Formu-489

lation and Simulation Characteristics. Journal of Climate, 19 (5), 643–674.490

Delworth, T. L., et al., 2012: Simulated Climate and Climate Change in the GFDL CM2.5491

High-Resolution Coupled Climate Model. Journal of Climate, 25 (8), 2755–2781.492

21



Dommenget, D., T. Bayr, and C. Frauen, 2013: Analysis of the non-linearity in the pattern493

and time evolution of el niño southern oscillation. Climate Dynamics, 1–23.494

Eisenman, I., L. Yu, and E. Tziperman, 2005: Westerly Wind Bursts: ENSOs Tail Rather495

than the Dog? Journal of Climate, 18 (24), 5224–5238.496

Frauen, C. and D. Dommenget, 2010: El niño and la niña amplitude asymmetry caused by497

atmospheric feedbacks. Geophysical Research Letters, 37 (18).498

Galanti, E. and E. Tziperman, 2000: ENSOs Phase Locking to the Seasonal Cycle in the Fast-499

SST, fast-wave, and mixed-mode regimes. Journal of the Atmospheric Sciences, 57 (17),500

2936–2950.501

Galanti, E., E. Tziperman, M. Harrison, A. Rosati, R. Giering, and Z. Sirkes, 2002: The502

Equatorial Thermocline OutcroppingA Seasonal Control on the Tropical Pacific OceanAt-503

mosphere Instability Strength. Journal of Climate, 15 (19), 2721–2739.504

Gebbie, G., I. Eisenman, A. Wittenberg, and E. Tziperman, 2007: Modulation of westerly505

wind bursts by sea surface temperature: A semistochastic feedback for ENSO. Journal of506

the Atmospheric Sciences, 64 (9), 3281–3295.507

Harrison, D. E. and B. S. Giese, 1988: Remote westerly wind forcing of the eastern equatorial508

pacific; some model results. Geophysical Research Letters, 15 (8), 804807.509

Harrison, D. E. and G. A. Vecchi, 1997: Westerly Wind Events in the Tropical Pacific,510

198695*. Journal of Climate, 10 (12), 3131–3156.511

Harrison, D. E. and G. A. Vecchi, 1999: On the termination of el niño. Geophysical Research512

Letters, 26 (11), 15931596.513

Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the Nonlinearity of514

Their Teleconnections. Journal of Climate, 10 (8), 1769–1786.515

22



Jin, F.-F., 1997: An Equatorial Ocean Recharge Paradigm for ENSO. Part I: Conceptual516

Model. Journal of the Atmospheric Sciences, 54 (7), 811–829.517

Jin, F.-F., S.-I. An, A. Timmermann, and J. Zhao, 2003: Strong El Niño events and nonlinear518

dynamical heating. Geophysical Research Letters, 30, 4 PP.519

Kalnay, E., et al., 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the520

American Meteorological Society, 77 (3), 437–471.521

Kang, I.-S. and J.-S. Kug, 2002: El Niño and La Niña sea surface temperature anoma-522

lies: Asymmetry characteristics associated with their wind stress anomalies. Journal of523

Geophysical Research, 107, 10 PP.524

Kessler, W. S., 2002: Is ENSO a cycle or a series of events? Geophysical Research Letters,525

29, 4 PP.526

Kistler, R., et al., 2001: The NCEPNCAR 50Year Reanalysis: Monthly Means CDROM and527

Documentation. Bulletin of the American Meteorological Society, 82 (2), 247–267.528

Larkin, N. K. and D. E. Harrison, 2002: ENSO Warm (El Niño) and Cold (La Niña) Event529

Life Cycles: Ocean Surface Anomaly Patterns, Their Symmetries, Asymmetries, and Im-530

plications. Journal of Climate, 15 (10), 1118–1140.531

Lengaigne, M., J.-P. Boulanger, C. Menkes, G. Madec, P. Delecluse, E. Guilyardi, and532

J. Slingo, 2003: The March 1997 Westerly Wind Event and the Onset of the 1997/98 El533

Niño: Understanding the Role of the Atmospheric Response. Journal of Climate, 16 (20),534

3330–3343.535

Okumura, Y. M. and C. Deser, 2010: Asymmetry in the Duration of El Niño and La Niña.536

Journal of Climate, 23 (21), 5826–5843.537

Okumura, Y. M., M. Ohba, C. Deser, and H. Ueda, 2011: A Proposed Mechanism for the538

Asymmetric Duration of El Niño and La Niña. Journal of Climate, 24 (15), 3822–3829.539

23



Philip, S. and G. J. van Oldenborgh, 2009: Significant atmospheric nonlinearities in the540

ENSO cycle. Journal of Climate, 22 (14), 4014–4028.541

Picaut, J., F. Masia, and Y. d. Penhoat, 1997: An Advective-Reflective Conceptual Model542

for the Oscillatory Nature of the ENSO. Science, 277 (5326), 663–666.543

Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell,544

E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and545

night marine air temperature since the late nineteenth century. Journal of Geophysical546

Research, 108 (D14), 4407.547

Rienecker, M. M., et al., 2011: MERRA: NASAs Modern-Era Retrospective Analysis for548

Research and Applications. Journal of Climate, 24 (14), 3624–3648.549

Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to550

NOAAs Historical Merged LandOcean Surface Temperature Analysis (18802006). Journal551

of Climate, 21 (10), 2283–2296.552

Suarez, M. J. and P. S. Schopf, 1988: A Delayed Action Oscillator for ENSO. Journal of the553

Atmospheric Sciences, 45 (21), 3283–3287.554

Tziperman, E., S. E. Zebiak, and M. A. Cane, 1997: Mechanisms of seasonal–ENSO inter-555

action. Journal of the Atmospheric Sciences, 54 (1), 61.556

Uppala, S. M., et al., 2005: The ERA-40 re-analysis. Quarterly Journal of the Royal Meteo-557

rological Society, 131 (612), 29613012.558

Vecchi, G. A., 2006: The Termination of the 199798 El Niño. Part II: Mechanisms of Atmo-559

spheric Change. Journal of Climate, 19 (12), 2647–2664.560

Vecchi, G. A., A. Clement, and B. J. Soden, 2008: Examining the Tropical Pacific’s Response561

to Global Warming. Eos, Transactions American Geophysical Union, 89 (9), 81.562

24



Vecchi, G. A. and D. E. Harrison, 2000: Tropical Pacific Sea Surface Temperature Anomalies,563

El Niño, and Equatorial Westerly Wind Events. Journal of Climate, 13 (11), 1814–1830.564

Vecchi, G. A. and D. E. Harrison, 2006: The Termination of the 1997–98 El Niño. Part I:565

Mechanisms of Oceanic Change*. Journal of Climate, 19 (12), 2633–2646.566

Vecchi, G. A. and A. T. Wittenberg, 2010: El Niño and our future climate: where do we567

stand? Wiley Interdisciplinary Reviews: Climate Change, 1757–778.568

Vialard, J., C. Menkes, J.-P. Boulanger, P. Delecluse, E. Guilyardi, M. J. McPhaden, and569

G. Madec, 2001: A Model Study of Oceanic Mechanisms Affecting Equatorial Pacific570

Sea Surface Temperature during the 199798 El Niño. Journal of Physical Oceanography,571

31 (7), 1649–1675.572

Wang, W. and M. J. McPhaden, 2000: The Surface-Layer Heat Balance in the Equatorial573

Pacific Ocean. Part II: Interannual Variability. Journal of Physical Oceanography, 30 (11),574

2989–3008.575

Weisberg, R. H. and C. Wang, 1997: A Western Pacific Oscillator Paradigm for the El576

Niño-Southern Oscillation. Geophysical Research Letters, 24 (7), 779–782.577

Wittenberg, A. T., 2004: Extended Wind Stress Analyses for ENSO. Journal of Climate,578

17 (13), 2526–2540.579

Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations?580

Geophysical Research Letters, 36, 5 PP.581

Wittenberg, A. T., A. Rosati, N.-C. Lau, and J. J. Ploshay, 2006: GFDL’s CM2 Global582

Coupled Climate Models. Part III: Tropical Pacific Climate and ENSO. Journal of Climate,583

19 (5), 698–722.584

25



Wolter, K. and M. S. Timlin, 2011: El niño/southern oscillation behaviour since 1871 as585

diagnosed in an extended multivariate enso index (MEI.ext). International Journal of586

Climatology, 31 (7), 10741087.587

Zebiak, S. E. and M. A. Cane, 1987: A Model El Niño–Southern Oscillation. Monthly588

Weather Review, 115 (10), 2262–2278.589

26



List of Figures590

1 Regression coefficient of FSU zonal wind stress anomalies onto the HadISST591

Niño-3.4 index, for Niño-3.4 greater than 0.5K (top) and less than -0.5K592

(bottom). Regions with confidence level exceeding 60% are hatched. 30593

2 Regression coefficient of the area averaged zonal wind stress anomalies onto594

the Niño-3.4 index, for Niño-3.4 greater than 0.5K (top) or less than -0.5K595

(bottom). The HadISST Niño-3.4 index is used for the FSU and ERA-40596

regression analysis. Reanalysis wind stress anomalies are regressed onto the597

reanalysis Niño–3.4 indices, for MERRA and NCEP-1 respectively. Model598

wind stress anomalies are regressed onto the model Niño–3.4 index. Area599

averages of the wind stress are computed within the 40-degree longitude600

box spanning from 5◦S to 5◦N where the regression coefficient is the largest601

across the equatorial Pacific domain. For warm events, wind stress anomalies602

are averaged within a box sits at 177W-137W (FSU), 176E-144W (ERA-603

40), 176W-136W (NCEP-R1), 179W-139W (MERRA), 167E-153W (CM2.1),604

170E-150W (CM2.5). For cold events, the box sits at 171E-149W (FSU),605

153E-167W (ERA-40), 160E-160W (NCEP-R1), 167E-153W (MERRA), 140E-606

180E (CM2.1), 140E-180E (CM2.5). 31607

3 Stability characteristics of the conceptual model in the c-d parameter space,608

with b = 0.24/mon and r = 0 (left), r = 20% (middle), r = 60% (right),609

Region 1: the system is linearly stable and sustained by normally distributed610

stochastic forcing (σ > 0, ε = 0). Region 2: the system is linearly unstable611

but is limited by additional damping (ε > 0); there is no stochastic forcing612

(σ = 0). Region 3: unstable, non-oscillatory and is not considered in the613

current study. 32614
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4 Sample time series of temperature anomalies. Locations in the parameter615

space are shown in Figure 11. (a) is an example of self-sustained oscillations616

free of stochastic forcings. (b) and (c) are examples of stochastically driven617

oscillations in a stable system. 33618

5 Winter years of warm and cold events identified using the percentiles criteria619

on HadISST (solid line) and ERSSTv3b (dashed line) datasets. Numbers620

above (below) the time series indicate the years when warm (cold) events peak. 34621

6 A sample SST anomaly time series, filtered by 5-month running mean, illus-622

trates how terminations, durations and transitions are defined. The segment623

is simulated using the conceptual model with b = 0.24/mon, c = 0.49/mon,624

d = 0.26/mon, r = 0.6, ε = 0.07K−2mon−1 and σ = 0.08γ × 7K ≈ 0.01Nm−2625

if γ = 0.02Nm−2/K. Filled circles indicate event peaks that are followed by an626

event of the opposite sign. Crosses indicate event peaks that are not followed627

by an event, under the criteria described in Section 3. 35628

7 Empirical cumulative distribution of event termination time using HadISST,629

ERSST, CM2.1, and CM2.5. The thick lines represent results using the entire630

time series. For the conceptual models, thin lines represent the standard631

deviation among 100-year samples. 36632

8 Conditional Probability of transitions for warm and cold events using Niño-3.4633

index 37634

9 Skewness of the simulated SST anomalies for the conceptual model with r =635

60% 38636

10 Empirical cumulative distribution of event termination time for the conceptual637

model with values of r = 0, 40%, 60% for b = 0.24/mon, c = 0.33/mon and638

d = 0.26/mon (region 1) 39639

28



11 Mean termination time (in month) for cold events minus that for warm events640

in the conceptual model, with r = 60% and b = 0.24/mon. The thick lines641

separate regions of different stability as in Figure 3. Grey line is the zero642

skewness contour from Figure 9. Star markers refer to sample temperature643

anomaly time series in Figure 4. 40644

12 Termination time for (a) warm and (b) cold events averaged across region645

2, as a function of stochastic forcing amplitude with r = 0.6. Solid line646

represents the mean. Dashed lines represent the 95-th and 5-th percentiles of647

the termination time. 41648

13 Conditional probability of warm-to-cold transition minus that of cold-to-warm649

transitions, for r = 60%, across the c-d parameter space. 42650

14 Changes in transition probabilities with increasing stochastic forcing intensity651

and fixed r = 60% for region 2 (self-sustained oscillations). Results are aver-652

aged within the region that have Probability(Warm-to-cold) = Probability(Cold-653

to-warm) = 1 when stochastic forcing is absent. 43654

15 Regions in the parameter space where the skewness (magenta, solid lines),655

warm-to-cold transition probability minus cold-to-warm transition probabil-656

ity (cyan, dotted line) and differences in termination time (yellow, dashed657

lines) are closest to the required values given by observations (r=20%), CM2.1658

(r=40%) and CM2.5 (r=20%); see Table 2. Lighter regions correspond to er-659

rors less than 50% of the targeted statistics. Darker regions correspond to660

errors less than 15%. 44661
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Fig. 1. Regression coefficient of FSU zonal wind stress anomalies onto the HadISST Niño-
3.4 index, for Niño-3.4 greater than 0.5K (top) and less than -0.5K (bottom). Regions with
confidence level exceeding 60% are hatched.
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Fig. 2. Regression coefficient of the area averaged zonal wind stress anomalies onto the
Niño-3.4 index, for Niño-3.4 greater than 0.5K (top) or less than -0.5K (bottom). The
HadISST Niño-3.4 index is used for the FSU and ERA-40 regression analysis. Reanalysis
wind stress anomalies are regressed onto the reanalysis Niño–3.4 indices, for MERRA and
NCEP-1 respectively. Model wind stress anomalies are regressed onto the model Niño–
3.4 index. Area averages of the wind stress are computed within the 40-degree longitude
box spanning from 5◦S to 5◦N where the regression coefficient is the largest across the
equatorial Pacific domain. For warm events, wind stress anomalies are averaged within
a box sits at 177W-137W (FSU), 176E-144W (ERA-40), 176W-136W (NCEP-R1), 179W-
139W (MERRA), 167E-153W (CM2.1), 170E-150W (CM2.5). For cold events, the box sits at
171E-149W (FSU), 153E-167W (ERA-40), 160E-160W (NCEP-R1), 167E-153W (MERRA),
140E-180E (CM2.1), 140E-180E (CM2.5).
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Fig. 3. Stability characteristics of the conceptual model in the c-d parameter space, with
b = 0.24/mon and r = 0 (left), r = 20% (middle), r = 60% (right), Region 1: the system
is linearly stable and sustained by normally distributed stochastic forcing (σ > 0, ε = 0).
Region 2: the system is linearly unstable but is limited by additional damping (ε > 0); there
is no stochastic forcing (σ = 0). Region 3: unstable, non-oscillatory and is not considered
in the current study.
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Fig. 4. Sample time series of temperature anomalies. Locations in the parameter space are
shown in Figure 11. (a) is an example of self-sustained oscillations free of stochastic forcings.
(b) and (c) are examples of stochastically driven oscillations in a stable system.

33



Fig. 5. Winter years of warm and cold events identified using the percentiles criteria on
HadISST (solid line) and ERSSTv3b (dashed line) datasets. Numbers above (below) the
time series indicate the years when warm (cold) events peak.
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Fig. 6. A sample SST anomaly time series, filtered by 5-month running mean, illustrates
how terminations, durations and transitions are defined. The segment is simulated using
the conceptual model with b = 0.24/mon, c = 0.49/mon, d = 0.26/mon, r = 0.6, ε =
0.07K−2mon−1 and σ = 0.08γ × 7K ≈ 0.01Nm−2 if γ = 0.02Nm−2/K. Filled circles indicate
event peaks that are followed by an event of the opposite sign. Crosses indicate event peaks
that are not followed by an event, under the criteria described in Section 3.
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Fig. 7. Empirical cumulative distribution of event termination time using HadISST, ERSST,
CM2.1, and CM2.5. The thick lines represent results using the entire time series. For the
conceptual models, thin lines represent the standard deviation among 100-year samples.
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Fig. 8. Conditional Probability of transitions for warm and cold events using Niño-3.4 index
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Fig. 9. Skewness of the simulated SST anomalies for the conceptual model with r = 60%
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Fig. 10. Empirical cumulative distribution of event termination time for the conceptual
model with values of r = 0, 40%, 60% for b = 0.24/mon, c = 0.33/mon and d = 0.26/mon
(region 1)
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Fig. 11. Mean termination time (in month) for cold events minus that for warm events in
the conceptual model, with r = 60% and b = 0.24/mon. The thick lines separate regions of
different stability as in Figure 3. Grey line is the zero skewness contour from Figure 9. Star
markers refer to sample temperature anomaly time series in Figure 4.
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Fig. 12. Termination time for (a) warm and (b) cold events averaged across region 2, as
a function of stochastic forcing amplitude with r = 0.6. Solid line represents the mean.
Dashed lines represent the 95-th and 5-th percentiles of the termination time.
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Fig. 13. Conditional probability of warm-to-cold transition minus that of cold-to-warm
transitions, for r = 60%, across the c-d parameter space.
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Fig. 14. Changes in transition probabilities with increasing stochastic forcing intensity
and fixed r = 60% for region 2 (self-sustained oscillations). Results are averaged within
the region that have Probability(Warm-to-cold) = Probability(Cold-to-warm) = 1 when
stochastic forcing is absent.
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Fig. 15. Regions in the parameter space where the skewness (magenta, solid lines), warm-to-
cold transition probability minus cold-to-warm transition probability (cyan, dotted line) and
differences in termination time (yellow, dashed lines) are closest to the required values given
by observations (r=20%), CM2.1 (r=40%) and CM2.5 (r=20%); see Table 2. Lighter regions
correspond to errors less than 50% of the targeted statistics. Darker regions correspond to
errors less than 15%.
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List of Tables662

1 Values of r estimated from linear regression analysis between wind stress663

anomalies and Niño-3.4 SST anomaly index. The column shows the data664

sources for the the Niño-3.4 SST anomaly index used in regressions. The row665

shows the data sources for the zonal wind stress anomalies. 46666

2 Parameters that produce the best simulations of observed, CM2.1 and CM2.5667

asymmetry statistics. b is fixed at 0.24/month. r are also fixed at values668

based on the zonal wind stress analysis. Std = Standard deviation of the669

temperature anomaly (in Kelvin); Skewness= Skewness of the temperature670

anomaly; LenDiff = Termination time of cold events minus that of warm671

events (in months); Pdiff = Probability of warm-to-cold transitions minus672

that of cold-to-warm transitions. The row(s) below Best Fit correspond to the673

asymmetry statistics derived from the Niño-3.4 SSTA index. Parenthesized674

values show statistics computed from the first and second halves of the Niño-675

3.4 SSTA index time series. 47676
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Table 1. Values of r estimated from linear regression analysis between wind stress anomalies
and Niño-3.4 SST anomaly index. The column shows the data sources for the the Niño-3.4
SST anomaly index used in regressions. The row shows the data sources for the zonal wind
stress anomalies.

τx anomaly dataset
ERA-40 ERA-Interim FSU MERRA NCEP

HadISST 0.21 0.12 0.21 0.19 -0.09
NCEP – – – – 0.00

MERRA – – – 0.24 –
ERA-Interim – 0.23 – – –

ERA40 0.24 – – – –
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Table 2. Parameters that produce the best simulations of observed, CM2.1 and CM2.5
asymmetry statistics. b is fixed at 0.24/month. r are also fixed at values based on the
zonal wind stress analysis. Std = Standard deviation of the temperature anomaly (in
Kelvin); Skewness= Skewness of the temperature anomaly; LenDiff = Termination time
of cold events minus that of warm events (in months); Pdiff = Probability of warm-to-cold
transitions minus that of cold-to-warm transitions. The row(s) below Best Fit correspond to
the asymmetry statistics derived from the Niño-3.4 SSTA index. Parenthesized values show
statistics computed from the first and second halves of the Niño-3.4 SSTA index time series.

Observations
r Std Skewness LenDiff Pdiff b c d

Best Fit 0.2 0.7 0.26 0.52 0.43 0.24 0.37 0.24
HadISST 0.72 (0.68,0.75) 0.34 (0.26,0.43) 0.9 (-0.4,2.9) 0.15 (0,0.2)
ERSST 0.77 (0.72,0.79) 0.38 (0.35,0.38) 2.1 (-1.1,4.0) 0.11 (-0.1,0.3)

CM2.1
Best Fit 0.4 1.0 0.28 1.9 0.6 0.24 0.36 0.25
Niño3.4 1.2 (0.28,0.34) (3.3,3.4) 0.6

CM2.5
Best Fit 0.2 1.1 -0.13 0.4 0.05 0.24 0.28 0.31
Niño3.4 1.1 (-0.16,-0.06) (2.2,2.8) 0.11(0.08,0.12)
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